Агаханов Н. и др. XXII Российская математическая олимпиада школьников

*

Прогрессия–729

Докажите, что в арифметической прогрессии с первым членом, равным 1, и разностью, равной 729, найдётся бесконечно много членов, являющихся степенью числа 10.

Разноцветный шестиугольник

Центры O1, O2 и O3 трёх непересекающихся окружностей одинакового радиуса расположены в вершинах треугольника. Из точек O1, O2, O3 проведены касательные к данным окружностям так, как показано на рисунке:

Известно, что эти касательные, пересекаясь, образовали выпуклый шестиугольник, стороны которого через одну покрашены в красный и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих отрезков.

Подписаться на RSS - Агаханов Н. и др. XXII Российская математическая олимпиада школьников