Календарь из кубиков

*

Сложность: 

В окне одного магазина я увидел оригинальный настольный календарь:

Дату указывали цифры на передних гранях двух кубиков. На каждой грани кубика стоит по одной цифре от 0 до 9. Переставляя кубики, можно изобразить на календаре любую дату от 01, 02, 03, ... до 31.

Какие цифры скрыты на невидимых гранях кубиков?

Решение

Цифра 0 должна стоять на гранях каждого кубика. Действительно, если ноль будет только на одном кубике, то граней другого не хватит для цифр от 1 до 9, необходимых для составления первых девяти чисел: 01, 02, ... 09.

Также на каждом кубике должны присутствовать цифры 1 и 2, необходимые для составления чисел 11 и 22.

Из рисунке на гранях белого кубика видны цифры 3, 4, 5. Следовательно, на его невидимых гранях должны стоять цифры 0, 1, 2. Оставшиеся четыре цифры — 6, 7, 8 и 9 — должны стоять на гранях чёрного кубика. Но из шести граней чёрного кубика три уже заняты цифрами 1, 2 (видны на рисунке) и 0 (должна обязательно стоять на одной из невидимых граней). Задача была бы неразрешима, если бы цифру 6 нельзя было использовать дважды: в «прямом» виде — как шестёрку и в «перевёрнутом» — как девятку. Таким образом, на скрытых гранях чёрного кубика должны стоять цифры 0, 6 (она же 9), 7 и 8.




Комментарии

Спасибо большое!!!

67890

Считайте, <a href="http://supermaster.info/"></a> что я теперь постаянный читатель у вас! <a href="http://proogorod.info/"></a>

<a href="http://cxbolezni.ru/"></a> Поскольку я не сильно разобрался в теме, то прошу вас написать пояснения и продолжения. Буду ждать. <a href="http://nagus.net/"></a>

Цифра 0 должна стоять на гранях каждого кубика. Действительно, если ноль будет только на одном кубике, то граней другого не хватит для цифр от 1 до 9, необходимых для составления первых девяти чисел: 01, 02, ... 09.Также на каждом кубике должны присутствовать цифры 1 и 2, необходимые для составления чисел 11 и 22.Из рисунке на гранях белого кубика видны цифры 3, 4, 5. Следовательно, на его невидимых гранях должны стоять цифры 0, 1, 2. Оставшиеся четыре цифры — 6, 7, 8 и 9 — должны стоять на гранях чёрного кубика. Но из шести граней чёрного кубика три уже заняты цифрами 1, 2 (видны на рисунке) и 0 (должна обязательно стоять на одной из невидимых граней). Задача была бы неразрешима, если бы цифру 6 нельзя было использовать дважды: в «прямом» виде — как шестёрку и в «перевёрнутом» — как девятку. Таким образом, на скрытых гранях чёрного кубика должны стоять цифры 0, 6 (она же 9), 7 и 8.

фигня

фигня

Решение, предполагающее что 6 и 9 - одно и то же, делает потенциально красивую задачу дикой дичью, уж извините. Хуже могут быть только черепахи, из которых третья лжёт.

Добавить комментарий

Plain text

  • Запрещены тэги HTML.
  • Адреса страниц и электронной почты автоматически преобразуются в ссылки.
  • Строки и параграфы переносятся автоматически.
Type the characters you see in this picture. (verify using audio)
Type the characters you see in the picture above; if you can't read them, submit the form and a new image will be generated. Not case sensitive.