8 мирных ладей

*

Сложность: 

Сколькими способами можно расставить 8 ладей на шахматной доске так, чтобы они не били друг друга?

Решение

Разобьём мысленно шахматную доску на 8 вертикалей. Ясно, что в каждой вертикали должна находиться одна и только одна ладья (иначе бы ладьи, оказавшиеся на одной вертикали, угрожали бы друг другу). Первую ладью можно поставить на любую из 8 клеток первой вертикали. Вторую ладью можно поставить на любую из семи клеток второй вертикали, кроме той клетки, которой угрожает первая ладья. Третью ладью можно поставить на любую из шести клеток третьей вертикали, кроме двух клеток, которым угрожают первые две ладьи, и так далее. Наконец, последнюю, восьмую ладью можно поставить в одну-единственную клетку последней вертикали, которой не угрожают первые семь ладей.

Всего же вариантов таких расстановок будет 8 × 7 × 6 × ... × 3 × 2 × 1 = 40320.

(Произведение всех натуральных чисел от 1 до n называется «n-факториал» и обозначается «n!». Таким образом, в данной задаче ответом будет число 8! = 40320.)




Комментарии

8600

Эээ... А горизонтали вы не учитываете? Они же и по горизонтали бить могут

По диагонали.

8!=40320

64*49*36*25*16*9*4*1=1625702400

Полностью согласен со мнением Saakyan!Во-первых мы можем поставить на любое место-тоесть на 8 в квадрате, тоесть 64, далее мы можем поставить на кол-во клеток равное 49, что является квадратом 7, далее по индукцие!
Ответ:8!*7!*6!*5!*4!*3!*2!*1!.
Ответ данный в решение примера администраторами сайта считаю неправильным!

Кандр

Добавить комментарий

Plain text

  • Запрещены тэги HTML.
  • Адреса страниц и электронной почты автоматически преобразуются в ссылки.
  • Строки и параграфы переносятся автоматически.
Type the characters you see in this picture. (verify using audio)
Type the characters you see in the picture above; if you can't read them, submit the form and a new image will be generated. Not case sensitive.